
SSP21

02/05/20 (r347)

Contents
1 Version Information 3

2 Introduction 4

3 Requirements 4
3.1 Simplicity of implementation . 4
3.2 Use only strong vetted cryptography 4
3.3 Flexible Basis of trust . 4
3.4 Asymmetric Certificate Revocation 5
3.5 Extensible only to the extent necessary 5
3.6 Authentication . 5
3.7 Protection from replay . 6
3.8 Session message time-to-live (TTL) 6
3.9 Optional encryption . 6
3.10 Perfect Forward Secrecy . 6
3.11 Support bump-in-the-wire retrofits 7
3.12 Support serial and IP . 7
3.13 Low overhead . 7

4 Handshake mode 8
4.1 Shared secrets . 8
4.2 Pre-shared public keys . 9
4.3 Public keys authenticated from a root certificate 10

4.3.1 The role of the authority 11
4.3.2 Issuing outstation certificates 11
4.3.3 Revoking outstation certificates 12
4.3.4 Issuing master certificates 12

5 The Link Layer 12
5.1 CRC Polynomial . 13

6 Cryptographic Layer 14
6.1 Terminology . 14
6.2 Algorithms . 16

6.2.1 Diffie-Hellman (DH) functions 16
6.2.2 Hash Functions . 16
6.2.3 Hashed Message Authentication Code (HMAC) 17
6.2.4 Authenticated Encryption with Associated Data (AEAD) 17
6.2.5 Key Derivation Function (KDF) 17

6.2.5.1 HKDF . 17
6.2.6 CSPRNG . 18

6.3 Messages . 18
6.3.1 Syntax . 18

6.3.1.1 Structs . 19
6.3.1.2 Enumerations 19

1

6.3.1.3 Bit fields . 20
6.3.1.4 Sequences . 20

6.3.1.4.1 Variable Length Count 21
6.3.1.4.2 Examples 21

6.3.1.5 Constraints . 22
6.3.2 Definitions . 23

6.3.2.1 Enumerations 23
6.3.2.1.1 Function 23
6.3.2.1.2 Session Nonce Mode 23
6.3.2.1.3 Handshake Ephemeral 23
6.3.2.1.4 Handshake Hash 24
6.3.2.1.5 Handshake KDF 24
6.3.2.1.6 Session Crypto Mode 24
6.3.2.1.7 Handshake Mode 25
6.3.2.1.8 Handshake Error 25

6.3.2.2 Handshake Messages 26
6.3.2.2.1 Version 26
6.3.2.2.2 Request Handshake Begin 27
6.3.2.2.3 Reply Handshake Begin 28
6.3.2.2.4 Reply Handshake Error 28
6.3.2.2.5 Session Data 29

6.4 Key Agreement Handshake . 29
6.4.1 Timing Considerations . 31
6.4.2 Abstract Handshake Interfaces 32

6.4.2.1 Initiator Handshake Interface (IHI) 32
6.4.2.2 Responder Handshake Interface (RHI) 32

6.4.3 Generic Handshake Procedure 33
6.4.3.1 Initiator Handshake Procedure 34
6.4.3.2 Responder Handshake Procedure 35

6.4.3.2.1 Processing RequestHandshakeBegin . . 35
6.4.3.2.2 Handling Session Auth Request 36

6.4.4 Security Properties . 36
6.4.5 Message Exchanges . 36
6.4.6 Handshake Modes . 37

6.4.6.1 Shared secret mode 37
6.4.6.1.1 IHI Implementation 37
6.4.6.1.2 RHI Implementation 38

6.4.6.2 Quantum Key Distribution (QKD) mode 39
6.4.6.2.1 IHI Implementation 40
6.4.6.2.2 RHI Implementation 40

6.4.6.3 Pre-shared public key mode 41
6.4.6.3.1 IHI Implementation 41
6.4.6.3.2 RHI Implementation 42
6.4.6.3.3 Input Key Material (IKM) Procedure

(Responder) 43
6.4.6.4 Industrial Certificate Mode 43

2

6.5 Sessions . 44
6.5.1 Initialization . 44
6.5.2 Invalidation . 44
6.5.3 Sending SessionData . 45
6.5.4 Validating SessionData 45
6.5.5 Time-to-live . 45

6.5.5.1 Clock drift . 46
6.5.5.2 Setting the TTL 46
6.5.5.3 Disabling Support 47

6.5.6 Session Crypto Modes . 47
6.5.6.1 MAC Modes . 47

6.6 Certificates . 48
6.6.1 ICF Definition . 49

6.6.1.1 Enumerations 49
6.6.1.1.1 PublicKeyType 49

6.6.1.2 Certificate Envelope 49
6.6.1.2.1 Security Discussion 50

6.6.1.3 Certificate Body 50
6.6.1.4 Extensions . 51

6.6.2 Certificate/Chain Validation 51
6.6.2.1 Trust Anchors 51
6.6.2.2 Self-signed Certificates 52
6.6.2.3 Verification Procedure 52

1 Version Information
SSP21 specifies both a major and minor version number on the wire so that
implementations can unambiguously determine compatibility. Changes to the
major version indicate that the protocol is no longer wire-compatible with older
versions. Changes to the minor version indicate the the protocol was extended in
some manner, e.g. additional cryptographic primitives were added to extensible
enumerations. Implementations with the same major version and different minor
versions will inter-operate so long as only optional modes defined in the earlier
minor version are used.

Changes to this document that do not increment either the major or minor
version do not affect wire-level compatibility in any way. They are grammatical
or meant to clarify the standard.

The version specified in this document has major version 0 and minor version 1,
i.e. 0.1.

3

2 Introduction
Secure SCADA Protocol (SSP) is cryptographic wrapper designed to secure
point-to-multipoint serial protocols, or to act as a security layer for new SCADA
applications. It is intended to fill a gap where existing technologies like TLS are
not applicable, or require too much processing power or bandwidth. It can be
used as a protocol agnostic bump in the wire (BitW) at initiator endpoints or
as a bump in the stack (BitS) on the master or the outstation. No provision is
made for retrofitting masters with a BitW as we assume that masters can be
much more easily upgraded than outstations.

3 Requirements
The following requirements guided the design of the specification and the selection
of appropriate companion standards.

3.1 Simplicity of implementation
The encodings, state machines, and other technical details of the protocol shall,
above all else but without sacrificing security, endeavor to be as simple to
implement as possible. Complexity, bells and whistles, and unneeded features
inevitably lead to bugs both in specification and implementation.

A reference implementation shall be developed to inform the evolving design, and
shall not be an afterthought. Too often standardization efforts spend too much
time on paper, only to lead to designs that are difficult to implement correctly.

3.2 Use only strong vetted cryptography
SSP21 shall only use algorithms that have received prolonged and intense scrutiny
from the crypto community. This does not mean that all algorithms need to
be NIST approved. Algorithms that are simpler to implement and/or have
variations with provably constant-time implementations should be preferred.

3.3 Flexible Basis of trust
SSP21 shall allow for trust to be anchored in multiple ways, including:

• Shared secrets, i.e. symmetric cryptography
• Shared public keys, i.e. key-server style key management based on asym-

metric cryptography
• Public Key Infrastructure (PKI) wholly controlled by the asset owner, with

an efficient certificate format.

The trade-offs associated with each of these domains is discussed in a later
section.

4

3.4 Asymmetric Certificate Revocation
Master certificates (certificates that identify masters to outstations), will support
a fast expiration scheme in addition to explicit revocation. This works well in an
operational environment where the utility has a reliable and isolated IP network
between an online authority and multiple master stations. An intermediate
authority private key can be used to periodically renew master certificates.
Using certificate revocation lists (CRLs) with outstations may be undesirable as
outstations may not be able to reach them on a serial channel, and masters would
have to push revocation notifications down to each endpoint and ensure that
they arrive. Outstations would then have to persist these CRLs in non-volatile
memory.

This scheme requires that outstations have access to an out-of-band time syn-
chronization mechanism such as GPS, local NTP via GPS in a substation, or
WWVB. Alternatively, over TCP networks, outstations could check an online
CRL.

Outstation certificates (certificates that identify outstations to masters) will be
longer lived, and will be revoked using an online CRL accessible to the masters
in the system over a traditional TCP network.

3.5 Extensible only to the extent necessary
• Endpoints shall be able to identify the protocols version to each other

during key exchange.
• Must be secure against protocol downgrade attacks via a mechanism that

fully authenticates the handshake.
• The protocol shall use security-suite specifications to allow new algorithms

to be used in future versions, or to provide more than one option for when
algorithms, inevitably, are compromised.

• The number of initial security suites will be limited to one or two, and will
only support authentication.

3.6 Authentication
All messages shall be authenticated. Each endpoint in the session shall be able to
unambiguously determine that a session message comes from the other endpoint.
The authentication mechanism shall automatically provide message integrity
and protection from spoofing and MitM attacks.

This authentication will ensure that a particular SCADA master is talking to a
particular outstation. In other words, it shall only secure the communication
link and will not authenticate individual users or operators of the system. Role
Based Access Control (RBAC) and auditing of users is best done at the platform
level, and is outside the scope of SSP21. Individual SCADA vendors are free to
use different technologies (such as Active Directory, RSA, LDAP, Kerberos, etc.)
to manage users at the platform level.

5

Particular BitS implementations could potentially use some metadata in certifi-
cates to limit or constrain what is allowed during a particular communication
session. How this metadata is used or configured to limit permissions for a
particular protocol is outside the scope of SSP21.

3.7 Protection from replay
Both endpoints of the session shall be able to detect replayed session messages.
Although the protocol needs to be secure from replay, it does not necessarily
need to ensure that all messages are delivered. SCADA protocols such as DNP3
automatically handle retries at a higher level. The protocol will support two
modes: one that strictly enforces packet order over (TCP) and a more tolerant
mode that allows any new (non-replayed) packet to pass over serial or UDP.

3.8 Session message time-to-live (TTL)
Since SSP21 is designed to protect control protocols with particular timing
constraints, undesirable behavior could occur if an attacker held back one or
more authenticated control messages and then replayed them in rapid succession.
To reduce the effectiveness of this mode of attack, both parties record their
relative time base during session negotiation. Session messages then include a
timestamp in milliseconds since the beginning of the session that indicates the
last possible moment when the packet should be accepted.

Implementations will have to make these timing parameters configurable so
that they can be tuned for the latency of particular networks. As relative clock
drift can occur, sessions may need to be renegotiated more frequently or the
configurable validity window of session messages increased appropriately.

3.9 Optional encryption
The secure operation of SCADA systems does not require confidentiality of
session traffic under all, or even most, circumstances. Reasons to prefer unen-
crypted sessions include the ability to inspect traffic with IDS/IPS and denying
a potentially opaque tunnel to an adversary.

Certain systems may exchange sensitive information and require session con-
fidentiality. SSP21 shall use a security suite specification and encodings that
allow for encrypted sessions in the future. The session key exchange mechanism
shall support forward secrecy.

3.10 Perfect Forward Secrecy
The protocol shall provide a mode that provides perfect forward secrecy. Namely,
if an adversary compromises the long-term private key of an endpoint, they shall
not be able to decrypt past sessions.

6

This mode is only useful for encrypted session modes, and does not offer any
benefit to authentication-only modes.

3.11 Support bump-in-the-wire retrofits
Outstation implementations of the protocol shall be capable of being deployed
as a bump-in-the-wire (BitW) or integrated into endpoints as a bump-in-the-
stack (BitS). BitS integration is preferred, but it is understood that BitW
implementations are necessary to retrofit legacy components during transitions.

Requiring a BitW implementation only for outstations and not masters simplifies
requirements as the BitW needn’t be protocol-aware. It can be configured with
the static addresses of the outstation and master, and ignore protocol messages
addressed for other nodes. In BitW and BitS implementations, all cryptographic
operations including key negotiation and authentication will occur at the bump.

3.12 Support serial and IP
Supporting multi-drop serial means that frames must be addressed in some
manner. SSP21 will use 16-bit addressing as this accommodates the addressing
scheme used for common existing SCADA protocols. SSP21 will have its own
delimiters or length fields, and will use some type of non-cryptographic error
detection so that environmental noise is probabilistically filtered out at a level
below cryptographic checks for deliberate tampering.

For some protocols, this new secure serial layer could act as a replacement for
redundant functionality in existing protocols. For example, the DNP3 link-layer
and transport function could be completely removed in BitS implementations
and replaced with the SSP21 crypto and framing layers. SSP21 could also fully
wrap the existing protocols, but removing redundancy in certain implementations
could provide significant bandwidth savings.

Out-of-band messages like session key establishment, heartbeats, etc. can only
be initiated from the SCADA master side when it attempts to send a normal
protocol message. This is because in half-duplex communications the wrapper
cannot squelch a reply from a remote by inappropriately using the channel.

3.13 Low overhead
Security is not a zero-cost protocol feature. Inevitably adding a security sub-
layer will require a few more bytes on the wire, increase latency, and put a
computational burden on endpoints. SSP21 will endeavor to minimize these
overheads and provide modes with varying requirements on hardware.

• reduced latency – BitS implementations have a significant advantage
in this regard over BitW. HMAC hold back can double latencies in BitW
integrations as the entire packet must be received and verified before
the first payload byte can be emitted. Some tricks could be played with

7

asymmetric baud rates to minimize this effect. MAC algorithms should be
used for which hardware acceleration exists.

• reduced bandwidth – It is not uncommon for serial SCADA systems
to operate at rates as low as 1200 bits per second. Cryptographic en-
codings need to be sensitive to tight polling margins. HMACs can be
truncated (per NIST guidelines) to reduce overhead. BitS integration
may be able to remove redundant layers provided by both the SSP21 and
the wrapped protocol. An efficient certificate format that utilizes Elliptic
Curve Cryptography (ECC) public keys will be used to reduce certificate
sizes.

4 Handshake mode
While the primary aim of this specification is describe the protocol in sufficient
detail that it can be faithfully implemented, it is important to describe the
trade-offs for the various handshake modes that are supported in the protocol.
Handshake modes may differ in either the way trust is anchored or in the security
properties they provide. This non-normative section of the document describes
the relative pros and cons of each mode.

SSP21 sends the same handshake messages, in the same order, regardless of
the handshake mode specified. The messages have roughly the same meaning,
but certain fields are interpreted in different ways depending on the mode. The
handshake has two request-response phases that can be roughly summarized as
follows:

• A single round-trip request/response (1-RTT) to perform key negotiation
(phase 1 - key negotiation)

• Each party then transmits its first session data message to authenticate
(phase 2 - authentication and optional payload)

Only phase 1 differs depending on the handshake mode. The authentication in
phase 2 and the session itself are identical in all handshake modes. The modes
are described informally in the following sections, mostly for the purposes of
analyzing the benefits and short-comings of each mode.

4.1 Shared secrets
In this mode, each pair of parties that wishes to communicate must have a
shared-secret that both parties possess prior to establishing a session. This secret
may be installed manually, or distributed securely using emerging technologies
like Quantum Key Distribution (QKD). Security is achieved in knowing that
only the other party possesses the same key. This shared secret, along with
a random nonce from each endpoint, is then used to establish a set of shared
session keys.

8

http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf

This mode of operation uses symmetric cryptography only, and consequently has
a number of advantages:

• The entire protocol can be implementing using only a secure hash function
if confidentiality is not required.

• It can be implemented on deeply embedded systems that might not be
powerful enough for asymmetric cryptography.

• It remains secure when a practical quantum computer is developed. The
effectiveness of 256-bit shared-secrets will be reduced to 128-bits by Grover’s
algorithm. All other modes will be vulnerable until practical quantum-
resistant public-key algorithms are available.

Despite these advantages, there are considerable challenges:

• The shared secret must leave the secure location where it is generated to
be shared with the other party. This likely entrusts secrets to additional
staff members or contractors in the absence of something like QKD.

• There is no support for perfect forward secrecy since there are no ephemeral
keys exchanged. If a shared secret is ever disclosed, any saved traffic can
be decrypted.

• If multiple masters are needed for redundancy purposes, the keys must
be shared with each master increasing the attack surface and the risk of
compromise, or the number of keys in the system must be doubled from N
to 2N.

• Compromise of a field asset always requires that the channel be re-keyed.
Full compromise of the master requires that the entire system be re-keyed.

4.2 Pre-shared public keys
In this architecture, each communication node has an asymmetric key pair. It is
free to disseminate the public key, and each node must possess the public key
for every other node with which it communicates. It might be pre-configured
with these peer public keys, or it might retrieve them from a key server using a
secure out-of-band mechanism. This architecture better addresses some of the
concerns presented with the symmetric key only architecture, namely:

• Multiple masters can be commissioned without doubling the number of
keys in the system, however, each outstation must possess the public key
of each master with which it must communicate.

• Only the master’s public key(s) need to be shared with commissioning
personnel. Each outstation can also secure its private key, and only share
the public key. This makes tampering from insiders slightly more difficult
than in the symmetric only scheme.

A number of potential problems still remain:

9

• Compromise of a master still results in having to update the master’s
public key on each outstation.

• Installing or authorizing additional masters requires either sharing the
master private key with the backup master, or installing an additional
master public key on all outstations.

SSP21 is able to operate without an authority by using the pre-shared key mode.

4.3 Public keys authenticated from a root certificate
The recommended mode for managing trust is the PKI mode. In this mode,
trust is anchored by a private authority controlled by the utility. Ideally, SCADA
masters and field assets (RTUs, gateways, IEDs, etc.) generate a key pair locally,
never share the private key with another entity (human or machine), and can
freely disseminate the public key for the purposes of certificate generation. The
primary role of any PKI is to reduce the complexity of key management by
requiring parties to only place their trust in a central signing authority. The
identity of all other parties is then established via digital signatures issued by
this authority.

Figure 1: Components of the system relevant to SSP21

The challenges of running a PKI largely revolve around managing enroll-
ment/revocation and keeping the authority secure. How this PKI is managed is
outside the scope of SSP21, however, the following sub-sections discuss such a
PKI notionally.

10

4.3.1 The role of the authority

The authority in the system possesses a private asymmetric key that it uses to
sign certificates. Certificates consist of the following elements:

• A public asymmetric key
• Metadata associated with the public key (e.g. id, validity windows, serial

numbers, etc)
• A digital signature over all other data calculated using the authority private

key.

Creating and signing certificates is one of the primary roles of the authority. In
its simplest form, this might consist of some cryptographic command line tools
on a properly isolated server with a private key and a set of humans with access
to this server. Such a basic system might work for small systems.

4.3.2 Issuing outstation certificates

There are far more outstations in any given SCADA system than the number
of masters. Such a statement might seem trivial, however, it is an important
insight into how the process of enrollment needs to be streamlined for large
systems. In such systems, the authority is envisioned to have a hardened web
portal accessible from the corporate LAN. This level of access allows authorized
personnel to reach the portal using cellular IP technologies and a VPN.

The web portal would likely be secured using a commodity TLS certificate
and the users authenticated using strong passwords and a second factor like a
security token. The authority itself would likely reside in the DMZ, thus proper
procedures will need to be followed to provide this access. Prior to commissioning
a new field asset, a privileged user would grant the user commissioning the field
asset the permission to generate a certificate for the asset. Thus the authority
would maintain a database of a few items:

• An editable set of field assets that will require enrollment.
• A means of authenticating users and roles/permissions. This information

is likely to come from an external identity management system.

The database will already be configured by the system administrator with all
of the authorized metadata for each certificate in question. The only piece of
information the person generating the outstation certificate needs to provide
once properly logged in is the outstation public key. Outstation certificates will
be very long lived, likely for the lifetime of the equipment. A cryptographic
break in the algorithm underlying the certificate signature will require that a
new certificate be installed, so this algorithm should be chosen prudently.

It’s important to note that while the authority could be a standalone application
with its own complete database of outstations, masters, and users, it might
also leverage data available in other systems. For instance, an LDAP server
or other enterprise identity system could be used to establish the identity and

11

permissions of users. The authority might also be capable of keeping its database
of outstations in the system synchronized with a utility EMS.

Allowing system administrators to pre-configure which users can generate certifi-
cates for which outstations and providing access to this part of the authority
through proper safeguards will substantially streamline the process of enrollment
and reduce the extent to which adding security impacts operations. The portal
approach also limits direct access to signing keys and provides a central point
for creating an audit trail regarding certificate generation.

4.3.3 Revoking outstation certificates

The master(s) will be capable of reaching a CRL on the authority and will
be responsible for checking it at a reasonable interval. The compromise of a
single outstation private key is small breach compared to other attack scenarios.
Nevertheless, a mechanism must be in place to allow for revocation.

4.3.4 Issuing master certificates

The recommended way to issue master certificates is machine-to-machine (M2M)
communication directly from the master to the authority. The reason for this
asymmetry is that on a serial network, there is no path for an outstation to reach
a certificate revocation list (CRL), and thus a fast expiration scheme allows
master certificates to be “revoked” by virtue of the fact that the authority can
refuse to renew them. This expiration should happen on the timescale of hours
and not days.

The compromise of a master private key is a significant security event, since that
master may be authorized to control a significant amount of field equipment.
There is no fast mechanism for informing outstations on a serial network that a
master has been compromised, thus some other mitigation will be needed until
the affected certificate expires naturally.

The communication link between the authority and the masters can be secured
using a separate, more-traditional PKI. Since the number of masters in the system
is low, it could even use pairs of self-signed certificates where the authority has
the public key of every master it needs to authorize. This public key would be
used to authenticate the certificate sign request for the certificate to be used to
authenticate the master to the outstation.

5 The Link Layer
SSP21 specifies a two layer architecture. The non-cryptographic link-layer
provides three services to the layers above it:

• Framing - A procedure is defined to identify a frame from a stream of
bytes.

12

• Addressing - The frame contains source and destination addresses for
the transmitter and receiver.

• Error detection - All of the header fields and payload are covered by a
cyclic redundancy check (CRC).

The link-layer defined in this document should only be considered a default
that can be deployed when useful. The core of SSP21 is the message-oriented
cryptographic layer. Other layers, such as UDP, could provide all the required
services provided by the link-layer.

Since the link-layer does not have any cryptographic protections, it is designed
with simplicity in mind and is completely stateless. The CRC is important at
this layer to detect data corruption from random sources (EMF, cosmic rays, etc).
This check is intended to prevent randomly corrupted payloads from reaching the
cryptographic layer. This prevents “tampering” false positives from occurring at
the cryptographic layer which would require a completely different organizational
response than occasional randomly corrupted frames.

[start][destination][source][length][crc-h][payload][crc-p]

The frames consist of the following fields. All multi-byte integer fields (including
the CRCs) are encoded in little little format.

destination (2-bytes) - The destination field encodes the address of the intended
recipient of the frame. Devices shall always set this field to the address of the
intended recipient when transmitting. When receiving a frame, devices shall not
do any further processing of frames with an unknown destination address.

source (2-bytes) - The source field encodes the address of the transmitting party.
The usage of this field may depend on the application layer of wrapped protocol.

length (2-bytes) - Length of the message, including the header and CRC, in
bytes.

crc-h (4-bytes) - A 32-bit CRC value calculated over the header (start, destina-
tion, source, and length fields). The CRC polynomial is described in detail in
the next section.

payload (0 to 4092 bytes) - An opaque payload that is passed to the crypto-
graphic layer. The length is determined by the length field in the header. This
length shall never exceed 4092 bytes.

crc-p (4-bytes) - A 32-bit CRC value calculated over the payload bytes.

5.1 CRC Polynomial
The CRC polynomial for the SSP21 link frame was selected based on the
Hamming distance (HD) offered by several candidate polynomials at different
payload lengths. Our candidates included the following polynomials:

13

notation DNP3 IEEE 802.3 Castagnoli Koopman
msb first 0x3d65 0x04c11db7 0xf4acfb13 0x32583499
Koopman 0x9eb2 0x82608edb 0xfa567d89 0x992c1a4c

The polynomials provide the following maximum payload lengths (in bytes) at
various Hamming distances:

HD DNP3 IEEE 802.3 Castagnoli Koopman
8 0 11 34 16
7 0 21 34 16
6 16 33 4092 4092
5 16 371 4092 4092
4 16 11450 8187 8188

Four byte polynomials can provide significantly better error detection across
longer payload lengths. The Koopman and Castagnoli polynomials were discov-
ered using exhaustive search techniques and have significantly longer runs of HD
= 6 protection than IEEE 802.3. We selected the Castagnoli polynomial because
of slightly better HD=8 coverage for very short frames. The error detection
properties of this polynomial have also been independently verified by at least
two researchers.

The maximum HD=6 payload length of 4092 determines the bound for the
maximum link layer frame size allowed by the standard.

6 Cryptographic Layer
The cryptographic layer is messaged-oriented, meaning that framing of the
message is accomplished by the layer(s) beneath it. SSP21 uses a handful of
message types to establish secure associations, and then transport user data
securely from one party to the other.

6.1 Terminology
The key agreement handshake in SSP21 is a request-reply protocol, thus are two
parties: an initiator and a responder. Normally, the initiator is expected to
be the SCADA master, and the responder is expected to be an outstation. It’s
perfectly possible, however, to flip this relationship in certain circumstances, and
have the outstation initiate the key agreement. To preserve the generality of the
specification the terms initiator and responder are used in place of master
and outstation.

14

Figure 2: SSP21 stack - The link and crypto layers are defined in this specification

15

6.2 Algorithms
SSP21 uses a number of cryptographic algorithms. They are described here within
the context of the functionality they provide. The initial SSP21 specification
contains a minimal subset of algorithms, but the protocol is capable of extension.

The following notation will be used in algorithm pseudo-code:

• The || operator denotes the concatenation of two byte sequences.
• The [b1, b2, .. bn] syntax denotes a, possibly empty, byte sequence.

6.2.1 Diffie-Hellman (DH) functions

SSP21 currently only supports Curve25519 for session key agreement. It is
described in detail in RFC 7748.

DH Curve length (DHLEN)
Curve22519 32

All DH curves will support the following two algorithms with the key lengths
specified above.

• generate_key_pair() -> (private_key, public_key) - Generate a
random public/private key pair.

• dh(private_key, public_key) -> (result_bytes) - Given a local pri-
vate key and remotely supplied public key, calculate bytes of length DHLEN.

6.2.2 Hash Functions

SSP21 currently only supports SHA256 described in FIPS 190-4. SHA512 and/or
hash function from the BLAKE family will likely be supported in the future.
The hash function serves two roles:

• Maintain a hash of all data sent and received during the key negotiation
sequence. This running hash is then incorporated into the authentication
signatures and makes any tampering of handshake data detectable.

• Used as a sub-function of HMAC to produce authentication tags and derive
session keys.

Hash Function Hash Length (HASHLEN)
SHA256 32

16

https://www.ietf.org/rfc/rfc7748.txt
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

6.2.3 Hashed Message Authentication Code (HMAC)

HMAC provides an authentication tag given a shared key and an input message.
It is described in RFC 2104. Any hash algorithm described above can be used
in conjunction with this construct, and the corresponding HMAC function will
produce a tag with the same length as the underlying hash function.

HMAC(key, message) -> AuthTag - Calculate an authentication tag from an
arbitrary length symmetric key and message bytes.

6.2.4 Authenticated Encryption with Associated Data (AEAD)

This specification describes how to apply AEAD constructs to both authenticate
and encrypt session data. AEAD constructs are used in a so called “detached”
more when the authentication tag is placed in separate field from the encrypted
data. This specification only describes the usage of AEAD constructs that
use CTR mode for the encryption operation, and therefore do not require
any additional padding. These algorithms include AES-GCM and ChaCha20-
Poly1305.

AEAD functions typically accept a nonce larger than the 16-bit nonce used in
SSP21. When mapping an AEAD to the SSP21 nonce, the 16-bit nonce shall be
placed in the lowest (first) 2 bytes of the nonce buffer in big endian format, and
higher bytes shall be set to zero.

6.2.5 Key Derivation Function (KDF)

SSP21 has extensible support for an abstract KDF used during the handshake
process.

All KDFs take salt and input_key_material parameters and return two keys,
each 32-bytes in length.

KDF(salt, input_key_material) -> (key1, key2)

The salt shall always be a publicly known, yet randomized value not controlled
by either party independently. The input_key_material shall always be, at
least partially, a high entropy secret value known only to the two parties.

6.2.5.1 HKDF

The default KDF is HKDF defined in RFC 5869.

HKDF is always be used to derive a pair of 256-bit session keys. This is
simple to implement when the block size of the hash function is also 32-bytes
(e.g. SHA-256):

HKDF(salt, input_key_material) -> (key1, key2)
{

// extract

17

https://www.ietf.org/rfc/rfc2104.txt
https://www.ietf.org/rfc/rfc5869.txt

set temp_key = HMAC(salt, input_key_material)
// specialized expand
set key1 = HMAC(temp_key, [0x01])
set key2 = HMAC(temp_key, key1 || [0x02])
return (key1, key2)

}

6.2.6 CSPRNG

A cryptographically secure pseudo-random number generator (CSPRNG) is
required for different functions, depending on the handshake mode:

• the generation of ephemeral DH keys in all public-key modes that provide
forward secrecy

• the generation of random nonces in symmetric key modes.

Any secure RNG will do, put implementers should err on the side of caution
and prefer one provided by the operating system, or a wrapper provided by a
trusted library.

6.3 Messages
Every message at the cryptographic layer begins with a one octet message type
identifier called the Function enumeration. The remaining octets are interpreted
according the defined structure of that type.

6.3.1 Syntax

SSP21 uses a formal syntax to define the contents of messages. Using such a
syntax has a number of advantages:

• The syntax separates the contents of messages from how they are serialized
on the wire

• It ensures that messages are always defined in a consistent way and com-
posed from the same primitives

• Code generation can be more easily leveraged to create encoders and
decoders

The SSP21 message syntax is similar to other message definition schemes such
as ASN.1, but is specifically designed for security-oriented applications instead
of generic application layer messaging, namely:

• The syntax is simple, limited, and only accommodates the requirements of
this specification.

• Any given message has one and only one valid serialization, similar to
ASN.1 DER.

• String types are intentionally not provided as they tend to lead to abuse
and vulnerabilities.

18

• Self-describing serialization is not an objective like the tag, length, value
(TLV) serialization in ASN.1 BER or DER.

• The amount of memory a message will require to deserialize is always a
constant known at compile-time.

6.3.1.1 Structs

Groupings of fields are called Structs. Structs use the following syntax:

struct <struct-name> {
<field1-name> : <field1-type>
<field2-name> : <field2-type>
...
<field3-name> : <field3-type>

}

Messages are special Structs whose first field is always a constant value of the
Function enumeration.

message <message-name> {
function : enum::Function::<function-name>
<field1-name> : <field1-type>
<field2-name> : <field2-type>
...
<field3-name> : <field3-type>

}

The following primitive types are defined. All multi-byte integers are serialized
in network byte order.

• U8 - 8-bit unsigned integer.
• U16 - 16-bit unsigned integer.
• U32 - 32-bit unsigned integer.

The following example defines a struct that provides counts of various types of
flowers:

struct Flowers {
num_roses : U8
num_violets : U16
num_petunias : U32

}

The serialized size of a Flowers struct would always be 7 bytes:

sizeof(U8) + sizeof(U16) + sizeof(U32) == 7

6.3.1.2 Enumerations

Single byte enumerations are defined with the following syntax:

19

enum <enum-name> {
<name1> : <value1>
<name2> : <value2>
...
<nameN> : <valueN>

}

The following example defines an enumeration of 3 possible color values:

enum COLOR {
RED : 0
GREEN : 1
BLUE : 2

}

Enumeration types can be referenced from within a Struct or Message definition
using the following notation:

struct <struct-name> {
<enum-field-name> : enum::<enum-name>

}

Using the COLOR example above we could define a Struct that represents the
intensity of a single color:

struct Intensity {
color : enum::COLOR
value : U8

}

6.3.1.3 Bit fields

Bit fields are single-byte members of Structs or Messages that encode up to eight
boolean values, one value for each bit using the following syntax:

bitfield <bitfield-name> { <top-bit-name>, ... <bottom-bit-name> }

Bit fields can have zero to eight member bits. The top bit (0x80) is always
implicitly defined first in the list of bit names. Unspecified bits shall always be
encoded as zero. Parsers shall fail parsing if any unspecified bit is set in the
input.

bitfield Flags { "flag1", "flag2", "flag3" }

The bit-field above with flag1 = true, flag2 = false, and flag3 = true would have
a serialized representation of 0b10100000 (0xA0). An example of input that
would fail a parsing for this bit field is 0b10100010 (0XA2).

6.3.1.4 Sequences

20

Sequences are variable length lists of a particular type. There are two categories
of sequences:

• SeqOf[Byte] - Denotes a sequence of bytes, like a key, signature, etc.
• SeqOf[<struct type>] - Denotes a sequence of a defined structure type.

6.3.1.4.1 Variable Length Count

When serialized, all sequence types are prefixed with a variable length count of
objects up to 2ˆ32 - 1 (unsigned 32-bit integer). This encoding is similar to the
ASN.1 DER encoding of length, but places a constraint on the maximum value.
The table below summarizes boundary values and their encodings.

num bytes value encoding
1 0 (min) [0x00]
1 127 (max) [0x7F]
2 128 (min) [0x81, 0x80]
2 255 (max) [0x81, 0xFF]
3 256 (min) [0x82, 0x01, 0x00]
3 65535 (max) [0x82, 0xFF, 0xFF]
4 65536 (min) [0x83, 0x01, 0x00, 0x00]
4 16777215 (max) [0x83, 0xFF, 0xFF, 0xFF]
5 16777216 (min) [0x84, 0x01, 0x00, 0x00, 0x00]
5 4294967295 (max) [0x84, 0xFF, 0xFF, 0xFF, 0xFF]

The following rules apply to encoding and decoding:

1) The first byte may represent a number in the interval [0,127] OR if the
top bit is set, the lower 7 bits encode the count of bytes that follow.

2) If the top bit of the first byte is set, the lower 7 bits may only be one of a
value in the range 1 to 4.

3) Values shall always be encoded in the fewest bytes possible, and parsers
shall always reject such invalid encodings.

6.3.1.4.2 Examples

An example of a struct containing a sequence of bytes:

struct ByteSequence {
value : SeqOf[Byte]

}

Given the message definition above, the ByteSequence with value equal to {0xCA,
0xFE} would be encoded as:

[0x02, 0xCA, 0xFE]

An example of a struct containing a sequence of structs:

21

struct NumberPair {
first : U8
second : U8

}

struct Pairs {
values : SeqOf[struct::NumberPair](max = 5)

}

Note that the count of NumberPair structures limited to 5.

Suppose that we wish to encode the following sequence of number pairs:

{ {0x07, 0x08}, {0x08, 0x09}, {0x0A, 0xCC} }

The serialized Pairs message would be encoded as:

[0x03, 0x07, 0x08, 0x08, 0x09, 0x0A, 0xCC]

The first value of 0x03 is the variable length and indicates that there are 3
NumberPair structs in the sequence. The encoded NumberPair structs directly
follow this count of objects.

6.3.1.5 Constraints

Certain field types have optional or mandatory constraints placed on their
contents. Constraints on a field are expressed with the following notation:

<field-name> : <field-type>(<id-1> = <value-1>, ..., <id-N> = <value-N>)

Any field without the trailing constraint syntax (. . .) is implicitly defined to
have no constraints.

For example, a sequence of bytes may have a count constraint that defines the
required number of elements for the sequence.

struct SomeStruct {
id : SeqOf[U8](count = 16)

}

Parsers should always enforce constraints internally and signal errors whenever
a constraint has been violated. The table defines the allowed constraints and
the field types to which they apply.

Field Type(s) Constraint ID Value semantics Mandatory
SeqOf[U8] min minimum number of elements no
SeqOf[U8] max maximum number of elements no
SeqOf[U8] count required number of elements no
SeqOf[struct::?] max maximum number of elements yes

22

6.3.2 Definitions

6.3.2.1 Enumerations

Common enumeration types that are used in one or more messages are defined
here.

6.3.2.1.1 Function

SSP21 message definitions always begin with a fixed value of the Function
enumeration. This fixed value allows a parser to determine the type of the
message by inspecting the first byte of an opaque message delivered by the link
layer. The correct message-specific parser can then be invoked.

enum Function {
REQUEST_HANDSHAKE_BEGIN : 0
REPLY_HANDSHAKE_BEGIN : 1
REPLY_HANDSHAKE_ERROR : 2
SESSION_DATA : 3

}

6.3.2.1.2 Session Nonce Mode

The SessionNonceMode enumeration specifies how the nonce (aka message
counter) is verified to protect packets from replay.

enum SessionNonceMode {
STRICT_INCREMENT : 0
GREATER_THAN_LAST : 1

}

• STRICT_INCREMENT - The receiver of a session message will verify that each
received nonce is strictly equal to the last valid nonce plus one. This is the
default mode and should always be used in session oriented environments
like TCP that provide stream integrity and ordering guarantees.

• GREATER_THAN_LAST - The receiver of a session message will verify that
each received is greater the last valid nonce. This mode is intended to be
used in session-less environments like serial or UDP and allows for loss
of authenticated packets, but also relaxes security allowing a MitM to
selectively drop messages from a session. The protocol being protected
by SSP21 is then responsible for retrying transmission in session-less
environments.

6.3.2.1.3 Handshake Ephemeral

The HandshakeEphemeral enumeration specifies what the contents of the
ephemeral_data field of the handshake request/reply contain.

23

enum HandshakeEphemeral {
X25519 : 0
NONCE : 1
NONE : 2

}

• X25519 - A x25519 DH public key
• NONCE - A 32-byte random nonce
• NONE - Empty value

6.3.2.1.4 Handshake Hash

The HandshakeHash enumeration specifies which hash algorithm will be used
during the key agreement handshake to prevent tampering.

enum HandshakeHash {
SHA256 : 0

}

• SHA256 - Use SHA256

6.3.2.1.5 Handshake KDF

The HandshakeKDF enumeration specifies which KDF is used to derive session
keys and intermediate keys.

enum HandshakeKDF {
HKDF_SHA256 : 0

}

• HKDF_SHA256 - Use HKDF where the HMAC is HMAC-SHA256

6.3.2.1.6 Session Crypto Mode

The SessionCryptoMode enumeration specifies the complete set of algorithms
used to authenticate (and optionally encrypt) the session.

enum SessionCryptoMode {
HMAC_SHA256_16 : 0
AES_256_GCM : 1

}

• HMAC_SHA256_16 - Cleartext user data with the authentication tag set to
HMAC-SHA256 truncated to the leftmost 16 bytes.

• AES_256_GCM - AES-256 in GCM mode.

Note: AEAD modes have their nonce’s length extended as required by the
particular algorithm, with the 16-bit SSP21 nonce in the lowest order 2 bytes in
big-endian format. Higher order bytes are set to zero.

24

6.3.2.1.7 Handshake Mode

The HandshakeMode enumeration specifies which procedure both parties use
to derive session keys. Each mode interprets certain fields in the handshake
messages in different ways.

enum HandshakeMode {
SHARED_SECRET : 0
PUBLIC_KEYS : 1
QUANTUM_KEY_DISTRIBUTION : 2
INDUSTRIAL_CERTIFICATES : 3

}

Note: Refer to the handshake section for how each mode shall interpret
handshake message fields.

• SHARED_SECRET - Both parties possess a shared-secret.
• PUBLIC_KEYS - Both parties have out-of-band knowledge of each other’s

public DH key.
• QUANTUM_KEY_DISTRIBUTION - Single-use shared secrets delivered via quan-

tum key distribution (QKD).
• INDUSTRIAL_CERTIFICATES - Both parties use an authority certificate to

authenticate each other’s public DH key from a certificate chain.

6.3.2.1.8 Handshake Error

The HandshakeError enumeration denotes an error condition that occurred
during the handshake process.

enum HandshakeError {
BAD_MESSAGE_FORMAT : 0
UNSUPPORTED_VERSION : 1
UNSUPPORTED_HANDSHAKE_EPHEMERAL : 2
UNSUPPORTED_HANDSHAKE_HASH : 3
UNSUPPORTED_HANDSHAKE_KDF : 4
UNSUPPORTED_SESSION_MODE : 5
UNSUPPORTED_NONCE_MODE : 6
UNSUPPORTED_HANDSHAKE_MODE : 7
BAD_CERTIFICATE_FORMAT : 8
BAD_CERTIFICATE_CHAIN : 9
UNSUPPORTED_CERTIFICATE_FEATURE : 10
AUTHENTICATION_ERROR : 11
NO_PRIOR_HANDSHAKE_BEGIN : 12
KEY_NOT_FOUND : 13
UNKNOWN : 255

}

Note: Implementations shall NEVER define custom error codes as this can
allow implementation fingerprinting.

25

• BAD_MESSAGE_FORMAT - A received handshake message was malformed in
some manner, i.e. it was improperly encoded.

• UNSUPPORTED_VERSION - The specified protocol version is not supported.

• UNSUPPORTED_HANDSHAKE_EPHEMERAL - The requested handshake
ephemeral is not supported or doesn’t match the handshake mode.

• UNSUPPORTED_HANDSHAKE_HASH - The requested hash algorithm is not sup-
ported.

• UNSUPPORTED_HANDSHAKE_KDF - The requested KDF algorithm is not sup-
ported.

• UNSUPPORTED_SESSION_MODE - The requested session mode is not sup-
ported.

• UNSUPPORTED_NONCE_MODE - The requested session nonce mode is not sup-
ported.

• UNSUPPORTED_HANDSHAKE_MODE - The requested handshake mode is not
supported.

• BAD_CERTIFICATE_FORMAT - One of the received certificates was improperly
encoded.

• BAD_CERTIFICATE_CHAIN - The certificate chain contains an authentication
or other issue,

• UNSUPPORTED_CERTIFICATE_FEATURE - One of the received certificates uses
a feature not supported by this implementation.

• AUTHENTICATION_ERROR - The responder was unable to authenticate the
initiator.

• NO_PRIOR_HANDSHAKE_BEGIN - The initiator requested handshake auth,
but no prior handshake begin was received.

• KEY_NOT_FOUND - In QKD mode, the requested key id was not found.

• UNKNOWN - A error code for any unforeseen condition or implementation
specific error.

6.3.2.2 Handshake Messages

6.3.2.2.1 Version

All handshake messages contain a version field that allows implementations to
determine compatibility and to aid in debugging remotely when compatibility
issues arise.

struct Version {
major : U16

26

minor : U16
}

6.3.2.2.2 Request Handshake Begin

The initiator starts the process of establishing a new session by sending the
RequestHandshakeBegin message. This message contains a specification of all
of the abstract algorithms to be used during the handshake and the session.

struct CryptoSpec {
handshake_ephemeral : enum::HandshakeEphemeral
handshake_hash : enum::HandshakeHash
handshake_kdf : enum::HandshakeKDF
session_nonce_mode : enum::SessionNonceMode
session_crypto_mode : enum::SessionCryptoMode

}

• handshake_ephemeral - Specifies the nonce or DH algorithm to be used
during the handshake, and implicitly determines the expected length of
ephemeral_data.

• handshake_hash - Specifies which hash algorithm is used to prevent tam-
pering of handshake data.

• handshake_kdf - Specifies which KDF is used for handshake key derivation.

• session_nonce_mode - Mode describing how session messages are pro-
tected against replay with differing security properties.

• session_crypto_mode - Specifies the full set of algorithms used to authen-
ticate (and optionally encrypt) the session

The message also includes some constraints on the session to be established.

struct SessionConstraints {
max_nonce : U16
max_session_duration : U32

}

• max_nonce - The maximum allowed value of either the transmit or receive
nonce.

• max_session_duration - The maximum allowed session duration in sec-
onds after which messages are no longer considered valid.

message RequestHandshakeBegin {
function : enum::Function::REQUEST_HANDSHAKE_BEGIN
version : struct::Version
crypto_spec : struct::CryptoSpec
constraints : struct::Constraints
handshake_mode : enum::HandshakeMode
ephemeral_data : SeqOf[U8]

27

mode_data : SeqOf[U8]
}

• version - Identifies the version of SSP21 in use. Only new versions that
introduce non-backward compatible changes to the specification which
cannot be mitigated via configuration will increment this number.

• crypto_spec - Struct that specifies the various abstract algorithms to be
used.

• constraints - Struct that specifies constraints on the session.

• handshake_mode - Determines how session keys are derived by interpreting
ephemeral_data and mode_data.

• ephemeral_data - An ephemeral nonce or public DH key corresponding
to the handshake_ephemeral in the CryptoSpec and possibly constrained
by the handshake_mode.

• mode_data - Additional data interpreted according to the handshake_mode.
Whether this field is empty or not depends on the mode.

6.3.2.2.3 Reply Handshake Begin

The responder replies to RequestHandshakeBegin by sending ReplyHandshakeBegin,
unless an error occurs in which case it responds with ReplyHandshakeError.

message ReplyHandshakeBegin {
function : enum::Function::REPLY_HANDSHAKE_BEGIN
version : struct::Version
ephemeral_data : SeqOf[U8]
mode_data : SeqOf[U8]

}

• ephemeral_data - An ephemeral nonce or public DH key inter-
preted according to the handshake_mode and corresponding to the
handshake_ephemeral in the CryptoSpec and interpreted according

• mode_data - Additional data data interpreted according to the
handshake_mode.

6.3.2.2.4 Reply Handshake Error

The outstation shall reply to a RequestHandshakeBegin with a ReplyHandsha-
keError message if an error occurs. This message is for debugging purposes only
during commissioning and cannot be authenticated.

message ReplyHandshakeError {
function : enum::Function::REPLY_HANDSHAKE_ERROR
version : struct::Version
error : enum::HandshakeError

28

}

• error - An error code that enumerates possible error conditions that can
occur during the handshake.

6.3.2.2.5 Session Data

Session data messages perform two functions:

• They authenticate the initial handshake when transmitted with nonce ==
0.

• Any session message (including the initial authentication message) may
also transfer authenticated (and possibly encrypted) user data to the other
party.

The message uses the following sub-fields:

struct AuthMetadata {
nonce : U16
valid_until_ms : U32

}

• nonce - An incrementing nonce that provides protection from replay of
session messages.

• valid_until_ms - A relative millisecond timestamp since session initial-
ization as defined in the section on key negotiation.

message SessionData {
function : enum::Function::SESSION_DATA
metadata : struct::AuthMetadata
user_data : SeqOf[U8]
auth_tag : SeqOf[U8]

}

• metadata - The Metadata struct is covered by the authentication mecha-
nism of the negotiated Session Mode.

• user_data - A blob of (possibly encrypted) user data.

• auth_tag - A tag used to authenticate the message.

6.4 Key Agreement Handshake
Key agreement in SSP21 is a single request/response message exchange whereby
both parties derive a common set of session keys using a procedure determined
by the HandshakeMode specified by the initiator. This initial message exchange
does not authenticate the parties to each other. The parties must then prove
to each-other that they derived the same keys by then transmitting an initial
SessionData message in each direction. A successful handshake involves the
exchange of the four messages depicted in figure 3.

29

The same messages are exchanged in the same order, regardless of which
HandshakeMode is in use. Only the interpretation of certain fields and the
procedure for deriving sessions keys differs between modes. The authentication
step is always identical for every mode. The steps for a successful handshake are
summarized below.

• Mode specification and key derivation (1-RTT)
– The initiator sends a RequestHandshakeBegin message specifying

the HandshakeMode and CryptoSpec.
– The responder replies with a ReplyHandshakeBegin or a

ReplyHandshakeError message.
– Both parties derive session keys according to the procedure specified

by the initiator
• Authentication and optional data transfer (1-RTT)

– The initiator sends a SessionData message with nonce equal to zero.
– The responder authenticates the message and replies with a

SessionData message with nonce equal to zero.

These initial SessionData messages with nonce equal to zero are syntactically
identical to other SessionData messages, however, the following differences
apply:

• The nonce of zero identifies that they are a special case, and are processed
according to special rules.

• A responder may reply to an initiator’s initial SessionData message with
a ReplyHandshakeError.

Because of their special status and processing rules, we define aliases for these
messages:

• A SessionData message with a nonce equal to zero sent by an initiator is
called a SessionAuthRequest message.

• A SessionData message with a nonce equal to zero sent by a responder is
called a SessionAuthReply message.

These aliases do not define new wire-level message types. That are purely used
as a shorthand for the purpose of specification. Implementations will want to
direct parsed SessionData messages to the correct handler if the nonce is zero or
greater than zero. A SessionData message for a previously authenticated session
shall always use a nonce greater than zero, whereas the session authentication
messages shall always use a nonce equal to zero.

Initiators and responders may optionally transfer user data in these messages.
This mechanism effectively makes the handshake process a single round trip
(1-RTT) request and response. Certain implementations may not wish to transfer
user data until fully authenticated. Such implementations may send zero-payload
session authentication messages and remain wire-level compatible.

A previously valid session (keys, nonce values, start time, etc) shall not be

30

invalidated until a session authentication message is received and authenticated
using the new session keys. Implementations may wish to implement this behavior
using two data structures, one for an active session and one for a pending
session.

Figure 3: Successful session establishment

6.4.1 Timing Considerations

In the procedure that follows, the initiator and responder establish a common
relative time base so that future session messages can be stamped with a time-to-
live (TTL) value since the beginning of the session. This TTL value allows either
side of the connection to detect delays induced by a man-in-the-middle. This
TTL is has its limitations. An attacker with the ability to delay the handshake
messages, can manipulate the common time base calculated by the initiator
within the configured response timeout for initiator.

All initiator implementations shall implement a response timeout to the hand-
shake message(s). This timeout shall default to 2 seconds. If a timeout occurs
before receiving a valid response, the current handshake attempt shall be aborted.
This ensures that attackers cannot skew the common time base by more than this
timeout parameter. Implementations should enforce a relatively low maximum

31

value for this parameter to ensure that users do not accidentally deploy systems
vulnerable to large session time manipulations

6.4.2 Abstract Handshake Interfaces

Mode specific interfaces are defined in the next two sections. The term interface
is used to describe an abstract implemenation consisting of both data and
functions that operate on the data and inputs. They are described using a
pseudo-code. Implementations are not required to use these abstractions when
implementing the standard. They are provided as a mechanism to concisely
specify the required behaviors and error handling in a manner that separates
the generic handshake proceedure from the specifics of any particular mode.

6.4.2.1 Initiator Handshake Interface (IHI)

The IHI consists of two abstract methods:

interface InitiatorHandshake
{

/*
* Returns the ephemeral_data and mode_data for the this handshake_mode
*
* Both of the return values are sequences of byte, possibly empty
*/
abstract initialize() -> (ephemeral_data, mode_data)

/*
* Validate the reply and return the IKM or ABORT
*/
abstract validate(reply: ReplyHandshakeBegin) -> IKM or ABORT

}

ABORT means “abort the handshake” and retry later if configured to do so.

6.4.2.2 Responder Handshake Interface (RHI)

The RHI consists of a single method:

interface ResponderHandshake
{

/*
* Partially validate the request and return the pair
* (ReplyHandshakeBegin, IKM) or an error
*/
abstract validate(request: RequestHandshakeBegin)

-> (ReplyHandshakeBegin, IKM) or HandshakeError
}

32

HandshakeError is the enumeration with the same name. Returning this enu-
meration means that the responder will abort the handshake proceedure and
return the ReplyHandshakeError message reporting the HandshakeError that
occured.

The ResponderHandshake interface always validates the following parts of
RequestHandshakeBegin:

1. The mode_data bytes must conform to the handshake_mode.
2. The ephemeral_data bytes must conform to the handshake_mode.
3. The spec.handshake_ephemeral enumeration must agree with the

handshake_mode.

Other validation is left to the generic handshake proceedure in the following
sections.

6.4.3 Generic Handshake Procedure

The steps in this section are always performed during a successful handshake,
regardless of which HandshakeMode is requested by the initiator. The generic
procedure reference the mode-specific interfaces. It is important to understand
that while the specifics of the mode sub-procedures vary, the following properties
always hold for any given mode:

• ephemeral_data is always generated dynamically or it is empty.

• mode_data is always a deterministic value or it is empty.

Notation:

• Both parties maintain a handshake hash denoted by the variable h which
is HASH_LEN in length.

• The HASH() function always refer to the hash function requested by the
master in the ‘RequestHandshakeBegin message.

• NOW() is a function that returns the current value of a relative monotonic
clock as a 64-bit unsigned count of milliseconds.

• RANDOM(count) is a function that returns an array of cryptographically
random bytes which is count in length.

• [] denotes an empty array or sequence

• || denotes the concatenation operator

Symmetric session keys in this this section use the following abbreviations:

• tx_sk - transmit session key

• rx_sk - receive session key

33

6.4.3.1 Initiator Handshake Procedure

1. The initiator prepares a RequestHandshakeBegin message to send to the
responder.

set request = IHI.initialize()

2. The initiator sets h to the hash of the fully-initialized serialized request:

set h = HASH(request)

3. The initiator transmits the message and records the time of transmission
for future use:

set time_tx = NOW()

4. The initiator starts a response timer that will be used to abort the hand-
shake if a ReplyHandshakeBegin message is not received before the timeout
occurs.

5. Upon receiving the ReplyHandshakeBegin message before the timeout:

• The initiator cancels the response timer.

• The initiator estimates the session start time:

set session_start_time = time_tx + ((NOW() - time_tx)/2)

• The initiator mixes the entire received response into h.

set h = HASH(h || response)

• The initiator uses the IHI to validate the response and obtain the
IKM:

set IKM = IHI.validate(response)

If an error occurs, the initiator aborts the handshake.

Otherwise, the initiator performs session key derivation using the
KDF requested in RequestHandshakeBegin:

set (tx_sk, rx_sk) = KDF(h, IKM)

The initiator then initializes the pending session with the session
keys, requested algorithms, and session_start_time.

6. The initiator uses the pending session to transmit a SessionAuthRequest
message. The initiator may optionally transfer user data in this message.
If no user data is available, then the user data shall be empty. All of the
fields are calculated in the same manner as an active session, with the
exception that the nonce is fixed to zero.

7. The initiator starts a response timer that will be used to terminate the
handshake if a SessionAuthReply message is not received before the
timeout occurs.

34

8. Upon receiving a SessionAuthReply message before the timeout, the ini-
tiator uses the pending session to validate and authenticate the message.
This procedure is identical to an active session, with the exception that
the nonce is required to be zero.

9. If the reply authenticates, the initiator replaces any active session with
the pending session. Any previously active session is invalidated.

6.4.3.2 Responder Handshake Procedure

The responder handshake is relatively stateless compared to the initiator. It does
not require the use of a timer, and a single flag can be used to track whether
the pending session is initialized or not.

6.4.3.2.1 Processing RequestHandshakeBegin

Upon receiving a RequestHandshakeBegin message:

1. The responder records the time the request was received:

set session_start_time = NOW()

2. The responder sets h equal to the hash of the entire received request:

set h = HASH(request)

3. The responder examines the Version field of the received request and if
the major version does not match the responder’s major version it replies
with HandshakeError set to UnsupportedVersion and does no further
processing.

4. The responder uses the RHI to validate the request and prepare a response:

set (IKM, ReplyHandshakeBegin) = RHI.validate(request)

If an error is returned instead, the responder replies with ReplyHandshake-
Begin(error) and performs no further actions.

The responder mixes the fully prepared response into h:

set h = HASH(h || response)

The responder performs session key derivation using the KDF requested in
the RequestHandshakeBegin message.

set (rx_sk, tx_sk) = KDF(h, IKM)

Note: The receive and transmit keys are reversed for the initiator and
responder.

The initiator initializes the pending session with the session keys, requested
algorithms, and session_start_time.

35

The responder transmits the ReplyHandshakeBegin obtained from the
RHI.

6.4.3.2.2 Handling Session Auth Request

1. The responder verifies that the pending session is initialized and valid.

2. The responder uses the pending session to validate the message. The
validation procedure is identical to an active session, with the exception
that the nonce is required to be zero.

3. The responder uses the pending session to transmit a SessionAuthReply
message with nonce equal to zero. The responder may optionally transfer
user data in this message. If no user data is available, then the user data
shall be empty. All of the fields are calculated in the same manner as an
active session, with the exception that the nonce is fixed to zero.

4. The responder replaces any active session with the pending session.
Any previously active session is invalidated.

6.4.4 Security Properties

If any of the following properties do not hold, then initiator and responder will
not agree on the same pair of session keys.

• If a MitM tampers with the contents of either the RequestHandshakeBegin
message or the ReplyHandshakeBegin, the two parties will have different
h values which will produce different keys when feed into the KDF.

• If either party is unable to calculate the input_key_material, they will
be unable to calculate the same keys using the KDF.

• A MitM cannot tamper with the common time_session_init by delaying
messages by more than whatever timeout setting the initiator uses while
waiting for replies from the responder. This ensures that the common
time-point, in two separate relative time bases, is at least accurate to
within this margin when the session is first initialized.

6.4.5 Message Exchanges

The responder may signal an error after receiving a RequestHandshakeBegin:

Figure 4: Error in Request Handshake Begin

36

6.4.6 Handshake Modes

This section defines the various handshake modes that can be used to perform
key derivation. The table below summarizes the modes, how they interpret
fields in the handshake messages, and whether session modes that encrypt have
forward secrecy (FS) if the long-term keys are later compromised.

Handshake Mode ephemeral data mode data key material FS
shared secret (SS) random nonces none SS + nonces no
QKD none key identifier qkd key yes
public keys DH keys nonce triple DH yes
certificates DH keys certificate chain triple DH yes

Note: QKD mode provides forward secrecy in that there is no long term key
to compromise. Keys used to establish sessions are only used once and then
discarded.

A triple DH operation performs three DH calculations using both the static
and ephemeral DH keys to calculate a shared secret for the two parties. This
shared secret is different for every session since the ephemeral keys are different.

Some patterns are apparent in the table:

• Shared-secret mode may only use a random nonce for ephemeral data and
never provides forward secrecy.

• The ephemeral data in public-key modes is an ephemeral DH public
key. These modes always provide forward secrecy when paired with an
encrypting session mode.

• Both public-key modes calculate the input key material in the same manner.
In certificate mode, the remote public key is obtained by authenticating
the certificate chain and extracting the public key from the peer certificate.

6.4.6.1 Shared secret mode

In shared secret mode, each party possesses the same static 256-bit key.

The input_key_material parameter to the KDF is a concatenation of the
shared secret and nonces provided by both the initiator and the responder.

6.4.6.1.1 IHI Implementation

The following pseudo-code implements the InitiatorHanshake interface for the
shared-secret mode:

class SharedSecretInitiatorHandshake implements InitiatorHandshake
{

// class member variables
set nonce = []

37

set shared_secret = <initialized by constructor>

initialize() -> (ephemeral_data, mode_data) {
set this.nonce = RANDOM(256) // save the nonce for later
return (this.nonce, []) // the mode_data is empty

}

validate(reply: ReplyHandshakeBegin) -> IKM or ABORT {

/*
* this is just a guard that prevents the method
* from being before initialize() has been called
*/
if(this.nonce.length == 0) {

return ABORT("nonce not initialized")
}

if(reply.ephemeral_data.length != 32) {
return ABORT("bad nonce length in reply")

}

if(reply.mode_data.length != 0) {
return ABORT("mode_data must be empty")

}

return (this.shared_secret || this.nonce || reply.ephemeral_data)
}

}

6.4.6.1.2 RHI Implementation

The following pseudo-code implements the ResponderHanshake interface for the
shared-secret mode:

SharedSecretResponderHandshake implements ResponderHandshake
{

// class member variables
set shared_secret = <initialized by constructor>

abstract validate(request: RequestHandshakeBegin)
-> (ReplyHandshakeBegin, IKM) or HandshakeError

{
if(request.crypto_spec.handshake_ephemeral != HandshakeEphemeral::NONCE) {

// doesn't match the handshake mode
return HandshakeError::UNSUPPORTED_HANDSHAKE_EPHEMERAL;

}

38

if(request.ephemeral_data.length != 32) {
return HandshakeError::BAD_MESSAGE_FORMAT;

}

if(request.mode_data.length != 0) {
return HandshakeError::BAD_MESSAGE_FORMAT;

}

set nonce = RANDOM(256)

return (
ReplyHandshakeBegin(ephemeral_data = nonce, mode_data = []),
// the IKM
this.shared_secret || request.ephemeral_data || nonce

);
}

}

6.4.6.2 Quantum Key Distribution (QKD) mode

In QKD mode, both parties continuously receive a stream of 256-bit keys. A
single one of these keys is used to establish an SSP21 session. The initiator signals
which key to use using the mode_data parameter in RequestHandshakeBegin
as a key identifier. This key identifer is implementation specific, but must be
capable of unambiguously identifying a key without revealing any information
about the key. Possible valid key identifiers include:

1. A fingerprint of the key, e.g. a secure hash of the key itself.
2. A sufficiently large increasing counter, with care given to the behavior if

the counter ever rolls over due to restart.

The handshake interface definitions that follow make use of two abstract functions
to obtain and find keys from some abstract store of keys delivered via QKD:

// Used by the initiator to retrieve the next key and the key's identifier
get_next_key() -> (key, identifier)

/**
* Used by the consumer to retrieve the next key and the key's identifier
* The Option in the return type denotes that the key may or may not be found
*/

find_key(identifier: Seq[Byte]) -> Option[key]

Important: Both of these functions consume the key from the key store,

39

i.e. the key in question will never be available again after a call to either
get_next_key or find_key.

6.4.6.2.1 IHI Implementation

The following pseudo-code implements the InitiatorHanshake interface for the
QKD mode:

class QKDInitiatorHandshake implements InitiatorHandshake
{

// the key is empty until the first call to initialize
set key = []

initialize() -> (ephemeral_data, mode_data) {
set (this.key, identifier) = get_next_key()
return ([], identifier) // the ephemeral_data is empty

}

validate(reply: ReplyHandshakeBegin) -> IKM or ABORT {

/*
* this is just a guard that prevents the method
* from being called before initialize() has been called
*/
if(this.key.length == 0) {

return ABORT("key not initialized")
}

if(reply.ephemeral_data.length == 0) {
return ABORT("ephemeral data is not empty")

}

if(reply.mode_data.length == 0) {
return ABORT("mode_data is not empty")

}

// the IKM is just the one-time key
return this.key

}
}

6.4.6.2.2 RHI Implementation

The following pseudo-code implements the ResponderHanshake interface for the
QKD mode:

QKDResponderHandshake implements ResponderHandshake

40

{
abstract validate(request: RequestHandshakeBegin)

-> (ReplyHandshakeBegin, IKM) or HandshakeError
{

if(request.crypto_spec.handshake_ephemeral != HandshakeEphemeral::NONE) {
// must be NONE in QKD mode
return HandshakeError::UNSUPPORTED_HANDSHAKE_EPHEMERAL;

}

// use the mode data to lookup the key
set optional_key = find_key(request.mode_data)

if(!optional_key.exists) {
return HandshakeError::KEY_NOT_FOUND;

}

return (
ReplyHandshakeBegin(ephemeral_data = [], mode_data = []), // empty reply
// the IKM
optional_key.get_value

);
}

}

6.4.6.3 Pre-shared public key mode

In pre-shared public key mode, each party has out-of-band prior knowledge of
the other party’s static public DH key. The ephemeral_data field in this mode
is an ephemeral public DH key. The mode_data field is always empty.

DH keys in this section use the following abbreviations:

• ls_pk - local static public key
• ls_vk - local static private key
• le_pk - local ephemeral public key
• le_vk - local ephemeral private key
• rs_pk - remote static public key
• re_pk - remote ephemeral public key

6.4.6.3.1 IHI Implementation

The following pseudo-code implements the InitiatorHanshake interface for the
pre-shared public key mode:

class PresharedPublicKeyInitiatorHandshake implements InitiatorHandshake
{

set ls_pk = <initialized by constructor>
set ls_vk = <initialized by constructor>

41

set rs_pk = <initialized by constructor>

// local ephemeral private key initialized for every handshake
set le_vk = []

initialize() -> (ephemeral_data, mode_data) {
// see section on DH algorithms
set (le_pk, this.le_vk) = generate_key_pair()
return (le_pk, []) // mode is empty

}

validate(reply: ReplyHandshakeBegin) -> IKM or ABORT {

if(reply.ephemeral_data.length != LEN_DH) {
return Abort("ephemeral_data length doesn't match DH algorithm")

}

if(reply.mode_data.length != 0) {
return Abort("mode_data is not empty")

}

set dh1 = DH(le_vk, re_pk)
set dh2 = DH(ls_vk, re_pk)
set dh3 = DH(le_vk, rs_pk)

return (dh1 || dh2 || dh3)
}

}

6.4.6.3.2 RHI Implementation

The following pseudo-code implements the ResponderHanshake interface for the
QKD mode:

QKDResponderHandshake implements ResponderHandshake
{

abstract validate(request: RequestHandshakeBegin)
-> (ReplyHandshakeBegin, IKM) or HandshakeError

{
// validate that the initiator is requesting the same DH algorithm
if(request.spec.handshake_ephemeral != DH_TYPE) {

return HandshakeError::unsupported_handshake_ephemeral;
}

// mode data must be empty

42

if(request.mode_data.length != 0) {
return HandshakeError::bad_message_format;

}

// validate that the length of the field is as expected
if(request.ephemeral_data.length != LEN_DH) {

return HandshakeError::bad_message_format;
}

set dh1 = DH(le_vk, re_pk)
set dh2 = DH(le_vk, rs_pk)
set dh3 = DH(ls_vk, re_pk)

return (dh1 || dh2 || dh3)
}

}

Important: This procedure omits validation for every possible type of DH keys.
Implementations must validate DH keys are valid for any specific DH algorithm.

Note: The dh2 and dh3 calculations are reversed for the initiator and responder,
but result in the same values.

6.4.6.3.3 Input Key Material (IKM) Procedure (Responder)

1. Verify that the handshake ephemeral is a DH key type.

2. Verify that the length of the ephemeral_data field matches the length of
the requested DH type.

3. Verify that the mode data field is empty.

4. Calculate the input_key_material:

• set dh1 = DH(le_vk, re_pk)

• set dh2 = DH(le_vk, rs_pk)

• set dh3 = DH(ls_vk, re_pk)

• return (dh1 || dh2 || dh3) as the IKM.

Note: The dh2 and dh3 calculations are reversed for the initiator and responder.

6.4.6.4 Industrial Certificate Mode

Certificate mode is similar to the pre-shared public key mode. Instead of having
prior knowledge of the remote party’s public static DH key, it is embedded in a
certificate that is authenticated using the public key of a trusted authority. The
calculations of the IKM are identical between the two modes. Instead of being
empty, the mode_data field contains a certificate chain.

43

TODO: Decide whether to mostly duplicate the prodcedure or find a way define
common points with pre-shared public key mode.

6.5 Sessions
6.5.1 Initialization

Upon completion of a successfully authenticated handshake, the communication
session is initialized (or possibly reinitialized) with the following arguments:

• rx_sk - A session key used to authenticate/decrypt received messages.

• tx_sk - A session key used to sign/encrypt transmitted messages.

• time_session_init - The time the session was considered initialized in
the local relative time base.

• read - A function corresponding to the specified SessionCryptoMode used
to process a received message’s payload:

read(key: Key, message: SessionData) -> (cleartext) or Error

• write - A function corresponding to the specified SessionCryptoMode
used to prepare a transmitted message’s payload:

write(key: Key, ad: Seq[Byte], plaintext: Seq[Byte])
-> (user_data: Seq[Byte], auth_tag: Seq[Byte])

• verify_nonce - A function used to verify the message nonce:

verify_nonce(last_nonce: U16, new_nonce: U16) -> bool

The session shall also always maintain a few additional variables initialized
internally:

• A 2-byte incrementing nonce (n) always initialized to zero, one for each
session key.

• A configurable session termination timeout after which the session will no
longer be considered valid.

6.5.2 Invalidation

Sessions will only become invalidated after one of the following conditions occurs:

• The transmit or receive nonce reaches the maximum value of 2ˆ16 - 1.

44

• A configurable amount of time elapses. This session timeout shall default
to 1 day and shall not be configurable to be greater than 30 days (the
maximum session TTL of a message since initialization is ~49.7 days).

• A complete, authenticated handshake occurs replacing any previously valid
session.

• When using session-oriented transports such as TCP, closing the underlying
communication layer will invalidate the SSP21 cryptographic session.

Under no condition will malformed packets, unexpected messages, authentication
failures, partial handshakes, or any other condition other than the ones listed
above invalidate an existing session.

6.5.3 Sending SessionData

The following procedure is followed to transmit a SessionData message:

• Ensure that the transmit nonce is not equal to the maximum value.

• Increment the transmit nonce by 1 and set this new value on the message.

• Set the valid_until_ms to NOW() plus the message TTL

• Set the user_data and auth_tag fields using the write function with
which the session was initialized.

Note: The first transmitted session message from each party always has n = 1.

Note: See the TTL session for advice on how to set appropriate TTLs.

6.5.4 Validating SessionData

The following procedure is followed to validate a received SessionData message:

• Verify the authenticity of the message using the read function with which
the session was initialized. Upon successful authentication, the cleartext
payload is returned.

• Verify that valid_until_ms <= NOW().

• Check the nonce using the verify_nonce function with which the session
was initialized.

• Set the current nonce equal to the value of the received nonce.

6.5.5 Time-to-live

Each session message contains a time-to-live (TTL) parameter called
valid_until_ms. This parameter is a count of milliseconds since session
initialization (as defined in the handshake section), after which, the receiving
party shall not accept an authenticated packet. This TTL prevents attackers

45

from holding back a number of valid session messages and then replaying them
in rapid succession.

While this feature provides an additional security guarantee absent in most IT
security protocols, it must be configured appropriately.

6.5.5.1 Clock drift

SSP21 Implementations are required to have an accurate relative clock with at
least millisecond precision. This standard does not require a particular minimum
drift rate from real-time, however, hardware solutions deploying SSP21 should
publish information about the maximum possible clock drift.

6.5.5.2 Setting the TTL

A strategy for setting the TTL in each transmitted message must take into
account the following factors:

• session key change interval (I) - The longer the interval between
session key changes, the more the relative clocks can drift apart.

• maximum relative drift rate (R) - The maximum possible drift rate
expressed as a number greater than 1. For example, 1.0001 specifies that
clocks can diverge by as much as 1/100th of 1% of the time elapsed.

• initiator handshake response timeout (T) - The longer the response
timeout in the handshake, the greater potential mismatch in the session
initialization time on the initiator and responder.

• maximum network latency (L) - The maximum amount of time it might
take for a message to reach its destination under normal conditions.

A simple scheme would be to add a fixed value to the current session time as
specified below.

set current_session_time = session_init_time - NOW()
set max_drift = I * R
set TTL = current_session_time + max_drift + T + L

Schemes where the maximum drift dead-band is calculated dynamically based
on the elapsed session time are also possible:

set current_session_time = session_init_time - NOW()
set max_drift = current_session_time * R
set TTL = current_session_time + max_drift + T + L

Regardless of the scheme chosen, implementations shall document whatever
method they use for determining the TTL on transmitted packets.

46

6.5.5.3 Disabling Support

In applications that do not require a TTL, or where no accurate clock is available,
implementations may optionally disable support for the TTL.

• In the receive direction, implementations may be configurable to ignore
the received TTL entirely.

• In the transmit direction, implementations may be configurable to set the
TTL to the maximum value of 2ˆ32 - 1.

6.5.6 Session Crypto Modes

The SessionCryptoMode specified by the initiator determines the concrete read
and write functions with which the session is initialized. These functions fall
into two general categories: MAC-based functions that only provide authentica-
tion, and Authenticated Encryption with Associated Data (AEAD) algorithms
that encrypt the payload and additionally authenticate both the payload and
associated data in the message.

AEAD implementations such as AES-GCM or ChaCha20-Poly1305 already
provide functions that largely match the read and write methods described
here. The only difference being that they also take the nonce as a parameter.

Note: Empty session messages are explicitly disallowed, with the exception
of the initial handshake authentication messages. Even authenticated empty
messages with n >= 1 should be treated and logged as an error, and never passed
to user layer.

6.5.6.1 MAC Modes

MAC session modes are based on some kind of MAC function, like a truncated
HMAC. The write function of these modes can be specified generically in terms
of the MAC function.

write(key: Key, ad: Seq[Byte], plaintext: Seq[Byte])
-> (user_data: Seq[Byte], auth_tag: Seq[Byte])

{
set auth_tag = MAC(key, ad || len(cleartext) || cleartext)
return (cleartext, auth_tag)

}

The MAC is calculated over the concatenation of the following parameters:

• The serialized form of the AuthMetadata field (ad).
• The length of the cleartext as an unsigned big-endian 16-bit integer
• The cleartext itself

Note: Incorporating the length of the cleartext provides domain separation
between ad and cleartext. This future proofs the specification in the event
that ad is ever becomes a variable length structure.

47

The corresponding read function calculates the same MAC, compares it for
equality using a constant-time comparison, and returns the user_data field of
the message as the cleartext:

read(key: Key, message: SessionData) -> (cleartext) or Error
{

set tag = MAC(key, message.user_data)
if(!equals_constant_time(tag, message.auth_tag)) {

return Error("authentication failure")
}

return messsage.user_data
}

Important: Using a constant-time comparison is critical to guard against
time-based side channel attacks.

6.6 Certificates
SSP21 defines its own certificate format, the Industrial Certificate Format (ICF).
It leverages the definition and serialization rules used for messages within the
cryptographic layer. The primary design goals of the ICF include:

• Simplicity - The format and its encodings should be easy to understand
and implement, where ASN.1 and its BER/DER encodings are considered
undesirably complex for this application.

• Efficiency/Size - The format shall be encodable in the low hundreds of
bytes, rather than thousands of bytes to enable usage in bandwidth-limited
applications.

• Relevant Metadata - Only metadata relevant to ICS should be included.
This explicitly means that much of the metadata in x.509 related to
domains/web is not pertinent here.

• Extensible in terms of algorithms - The format shall allow for migration to
stronger digital signature algorithms (DSA) in the event of deprecation or
break of any particular algorithm.

• Extensible in terms of metadata - It is desirable in certain applications
to sign and include additional metadata in the certificate beyond what
was defined in the original specification. An example of such an extension
would be role based access control (RBAC) permissions for a specific appli-
cation protocol. The certificate format shall provide the ability to define
extensions and define the required behavior when undefined extensions are
encountered.

48

Defining an additional certificate format does not preclude SSP21 from being
extended in the future to use X.509.

6.6.1 ICF Definition

The certificate format consists of three components:

• An outer envelope that contains unauthenticated metadata about the
issuer, algorithm, and the signature value.

• Inner certificate data fully covered by specified the digital signature algo-
rithm.

• Optional extensions contained within the certificate data itself.

6.6.1.1 Enumerations

The following enumerations are used within the various ICF message definitions.

6.6.1.1.1 PublicKeyType

This enumeration defines the type of the public key embedded in the certificate
body.

enum PublicKeyType {
Ed25519 : 0
X25519 : 1

}

• Ed25519 - The key is an Ed25519 DSA public key.
• X25519 - The key is an x25519 Diffie-Hellman key.

6.6.1.2 Certificate Envelope

The certificate envelope is defined as follows:

message CertificateEnvelope {
issuer_id : SeqOf[U8](count = 16)
signature : SeqOf[U8]
certificate_body : SeqOf[U8]

}

• issuer_id - A 16-byte digest of the issuer’s public key. This digest shall
always be the leftmost 16 bytes of the SHA-256 hash of the public key.

• signature - The value of the signature.

• certificate_body - The certificate body covered by the specified digital
signature algorithm. This data shall not be parsed until the authenticity
is established by verifying the signature.

49

The following digital signature algorithms (DSA) are defined for usage with the
ICF.

6.6.1.2.1 Security Discussion

Attackers may freely manipulate the issuer_id field with the following impacts:

• The verifying party would be unable to find the corresponding public key
in which case the verification would immediately fail.

• The verifying party would apply the wrong public key to the DSA verifica-
tion, in which case the verification would fail with similar probability as
attempting to brute force the signature value.

This issuer_id digest is not cryptographic in nature. It merely acts as convenient
fixed-length digest for public keys of any length. It must be well distributed
against random inputs (i.e. public key values), but need not be cryptographically
secure. A break in the underlying SHA-256 hash function does not require
changing how the issuer_id is calculated.

The truncated hash used in the issuer id is not cryptographic in nature, and
merely needs to be collision resistant against the possible random public keys
deployed in the system. It serves to provide a fixed size id for public keys of any
size or length.

Attackers may also manipulate the algorithm field. Such a manipulation would
fail either due to the length of the signature being incorrect, or an signature
value.

6.6.1.3 Certificate Body

The certificate body is defined as follows:

message CertificateBody {
serial_number : U32
valid_after : U64
valid_before : U64
signing_level : U8(max = 6)
public_key_type : enum::PublicKeyType
public_key : SeqOf[U8]
extensions : SeqOf[struct::ExtensionEnvelope](max = 5)

}

• serial_number - An incrementing serial number assigned by the issuer
• valid_after - Number of milliseconds since Unix epoch, before which,

the certificate shall be considered invalid.
• valid_before - Number of milliseconds since Unix epoch, after which, the

certificate shall be considered invalid.

50

• signing_level - A signing level of zero indicates that the certificate is
for an endpoint. Otherwise the certificate is for an authority which may
produce any certificate type with signing_level less than its own.

• public_key_type - The type of the public key that follows.
• public_key - The public key value defined by the public_key_type
• extensions - An optional sequence of extensions that define additional

required behaviors like application protocol specific whitelists.
• authority - The holder of the certificate may produce endpoint certificates

or authority certificates with a signing_level less than its own. They
may not directly participate as endpoints.

• endpoint - The holder of the certificate may act as an endpoint within
the system, but may not sign other certificates.

6.6.1.4 Extensions

Certificate extensions have their own envelope that shall be readable by all
implementations.

message ExtensionEnvelope {
identifier : U32
extension_body : SeqOf[U8]

}

The identifier for each extension shall be unique, and all extensions shall be
registered and approved for completeness and suitability with the body main-
taining the SSP21 standard. Proprietary extensions are explicitly forbidden. An
unknown extension shall always fail verification.

6.6.2 Certificate/Chain Validation

An endpoint certificate may be presented during the SSP21 handshake by itself
or as part of a chain. This section describes the validation process for a chain.
A standalone certificate is just the special case of a chain where the endpoint
certificate is directly signed by the trust root. In the descriptions that follow a
single certificate is just a chain of length one.

In PKI mode, trust is fully rooted in the public key of (typically) one authority.
This authority may then optionally delegate it’s authority to an intermediate
signing authorities, or it may directly sign endpoint certificates. End users shall
maintain separate signing authorities for masters and outstations so that the
compromise of an outstation’s private key doesn’t enable attacker control of
other outstations.

6.6.2.1 Trust Anchors

The device or application running an SSP21 implementation must store the trust
anchors in the system: the long-term public keys of one or more authorities

51

Figure 5: Verification of a certificate chain (depth == 3)

embedded in self-signed certificates. How this trust store is implemented is not
defined, but some examples include:

• A single certificate loaded into memory during program initialization
• A folder of such certificates with file names corresponding to their

issuer_id, i.e. SHA-2 hash of the public key

The certificates in the trust store are wholly trusted and used to establish the
authenticity of other certificates. Certificates in the trust store are selected based
on the issuer_id of the first certificate in any chain.

6.6.2.2 Self-signed Certificates

The certificates in the trust store are self-signed, i.e. their signature is computed
by the private key corresponding to the public key they contain. As such, no
external party verifies their authenticity. Being the trust anchor, they derive
their authority merely by their presence on the device.

Even though this could be accomplished with a bare public key, the self-signed
certificate approach is preferred for a number of reasons:

• Symmetry - It allows for authority, intermediate signing authority, and
endpoint certificates to be dealt with uniformly.

• Bundled configuration - It allows for configuration parameters to be bundled
with the authority public key such as validity times and signing depths.
For instance, a root authority certificate with signing depth == 1 would
not allow for intermediate certificates during verification.

6.6.2.3 Verification Procedure

52

The goal of certificate chain verification is to ultimately authenticate the final
certificate via the chain of trust. Any other result than ending up with a
verified certificate at the end of the chain is considered a failed verification. This
verification function has the following signature in pseudo code. It will return an
error condition if a failure occurs instead of returning a valid terminal certificate.

verify(anchors : Seq[CertificateBody], chain: Seq[CertificateEnvelope])
-> CertificateBody or HandshakeError

• anchors - One or more trusted root certificates.
• chain - A chain of one or more certificates to be validated against one of

the anchors.

If no error occurs, verify returns the last parsed certificate in the chain.

The following steps are performed to verify the chain:

1) Upon receiving a certificate chain (certificate count >= 1), the
receiving party shall first examine the issuer_id in the first (pos-
sibly only) certificate in the chain and identify the requested an-
chor certificate. If the anchor certificate cannot be found, return
HandshakeError::BAD_CERTIFICATE_CHAIN.

2) Iterate over adjacent certificate pairs using a general purpose function,
begining with the selected anchor certificate (A) and the first certificate
(C1) in the chain.

Parent Child
| |
V V

A C1 C2 ... C(n-1) Cn

Verification proceeds rightwards, one certificate at a time, until an error occurs
and is returned, or the final pair is validated:

Parent Child
| |
V V

A C1 C2 ... C(n-1) Cn

This sub-function has the the following signature:

53

verify(parent : CertificateBody, child: CertificateEnvelope)
-> CertificateBody or HandshakeError

• parent - The parsed and verified body of the parent certificate.
• child - The parsed but unverified envelope of the child certificate.

The function returns the verified body of the child certificate or an error.

The following sub-steps are performed for each invocation of verify_pair:

A) Compare the issuer_id in the child envelope to the value calcu-
lated over the parent’s public key. If they do not match, return
HandshakeError::BAD_CERTIFICATE_CHAIN.

B) Examine the public_key_type in the parent body. If it is not a DSA public
key (e.g. it is a DH key), return HandshakeError::BAD_CERTIFICATE_CHAIN.

C) Verify that the length of the signature in the child envelope matches the
output length of the DSA algorithm specified the parent public_key_type.
If it does not, return HandshakeError::BAD_CERTIFICATE_CHAIN.

D) Verify the DSA signature value in the child envelope using the public key in
parent body and the raw bytes of certificate_body field of the child enve-
lope. If verification fails, return HandshakeError::AUTHENTICATION_ERROR.

E) Fully parse the child certificate body. If parsing fails, return
HandshakeError::BAD_CERTIFICATE_FORMAT.

F) Verify that parent.valid_after >= child.valid_after. If it is not, return
HandshakeError::BAD_CERTIFICATE_CHAIN.

G) Verify that parent.valid_before <= child.valid_before. If it is not, return
HandshakeError::BAD_CERTIFICATE_CHAIN.

H) Verify that parent.signing_level > child.signing_level. If it is not, return
HandshakeError::BAD_CERTIFICATE_CHAIN.

I) Return the fully verified child body for the next iteration.

3) Return HandshakeError::BAD_CERTIFICATE_CHAIN if the signing_level
if the terminal certificate is not zero.

4) Return HandshakeError::BAD_CERTIFICATE_CHAIN if the
public_key_type of the terminal certificate is not a DH key.

5) Return the fully verified terminal certificate.

54

	Version Information
	Introduction
	Requirements
	Simplicity of implementation
	Use only strong vetted cryptography
	Flexible Basis of trust
	Asymmetric Certificate Revocation
	Extensible only to the extent necessary
	Authentication
	Protection from replay
	Session message time-to-live (TTL)
	Optional encryption
	Perfect Forward Secrecy
	Support bump-in-the-wire retrofits
	Support serial and IP
	Low overhead

	Handshake mode
	Shared secrets
	Pre-shared public keys
	Public keys authenticated from a root certificate
	The role of the authority
	Issuing outstation certificates
	Revoking outstation certificates
	Issuing master certificates

	The Link Layer
	CRC Polynomial

	Cryptographic Layer
	Terminology
	Algorithms
	Diffie-Hellman (DH) functions
	Hash Functions
	Hashed Message Authentication Code (HMAC)
	Authenticated Encryption with Associated Data (AEAD)
	Key Derivation Function (KDF)
	HKDF

	CSPRNG

	Messages
	Syntax
	Structs
	Enumerations
	Bit fields
	Sequences
	Variable Length Count
	Examples

	Constraints

	Definitions
	Enumerations
	Function
	Session Nonce Mode
	Handshake Ephemeral
	Handshake Hash
	Handshake KDF
	Session Crypto Mode
	Handshake Mode
	Handshake Error

	Handshake Messages
	Version
	Request Handshake Begin
	Reply Handshake Begin
	Reply Handshake Error
	Session Data

	Key Agreement Handshake
	Timing Considerations
	Abstract Handshake Interfaces
	Initiator Handshake Interface (IHI)
	Responder Handshake Interface (RHI)

	Generic Handshake Procedure
	Initiator Handshake Procedure
	Responder Handshake Procedure
	Processing RequestHandshakeBegin
	Handling Session Auth Request

	Security Properties
	Message Exchanges
	Handshake Modes
	Shared secret mode
	IHI Implementation
	RHI Implementation

	Quantum Key Distribution (QKD) mode
	IHI Implementation
	RHI Implementation

	Pre-shared public key mode
	IHI Implementation
	RHI Implementation
	Input Key Material (IKM) Procedure (Responder)

	Industrial Certificate Mode

	Sessions
	Initialization
	Invalidation
	Sending SessionData
	Validating SessionData
	Time-to-live
	Clock drift
	Setting the TTL
	Disabling Support

	Session Crypto Modes
	MAC Modes

	Certificates
	ICF Definition
	Enumerations
	PublicKeyType

	Certificate Envelope
	Security Discussion

	Certificate Body
	Extensions

	Certificate/Chain Validation
	Trust Anchors
	Self-signed Certificates
	Verification Procedure

